Rutgers University: Algebra Written Qualifying Exam

August 2015: Problem 4 Solution

Exercise. Let G be a group of order $2015=5 \cdot 13 \cdot 31$.
(a) Prove the existence of normal subgroups G of orders 13,31 , and 155.

Hint: establish the existince of those subgroups in that order.

Solution.

Using the Sylow theorems:

$$
n_{13} \equiv 1 \quad \bmod 13 \quad \text { and } \quad n_{13} \mid 155 \quad \Longrightarrow \quad n_{13}=1
$$

\Longrightarrow There is one Sylow 13-subgroup, which has order 13, and it is normal in G.

$$
n_{31} \equiv 1 \quad \bmod 31 \quad \text { and } \quad n_{31} \mid 65 \quad \Longrightarrow \quad n_{31}=1
$$

\Longrightarrow There is one Sylow 31-subgroup, which has order 31, and it is normal in G. Let's call this subgroup H_{31} H_{31} is a cyclic subgroup of order 31 that contains all 30 elements of 31 .
Let H_{5} denote a Sylow 5-subgroup. Since 155 is composite, we cannot use typical strategies... Idea:
(1) Identify a homomorphism from H_{5} to the automorphisms of H_{31}
(2) Show normalizer of H_{5} in G contains both H_{5} and H_{31}
(3) Get $H_{5} \triangleleft G$
(4) Then $H_{5} H_{31}$ is a normal subgroup of order 155.
(1) Define homomorphism $f: H_{5} \rightarrow A\left(H_{31}\right)$ that sends element $x \in H_{5}$ to the automorphism $x t x^{-1}$ of $H_{31},\left(t \in H_{31}\right)$
(2) If $\phi: G \rightarrow H$ and $\operatorname{gcd}(|G|,|H|)=1$, then ϕ is the trivial homomorphism.

Since the target has order 31 and the source has order 5 and $\operatorname{gcd}(5,31)=1$,
f is the trivial homomorphism and so $t x t^{-1}=x$ and H_{31} normalizes H_{5}.
So the normalizer of H_{5} in G contains both H_{5} and H_{31}.
\Longrightarrow it has at least 155 elements and index of at most 13 by Lagrange.
(3) But, since n_{p} is the index of the Sylow p-subgroup, its index is $n_{5}=1$ or 31

$$
\Longrightarrow \mathrm{n}_{5}=1 \Longrightarrow H_{5} \triangleleft G
$$

(4) $\Longrightarrow K=H_{5} H_{31}$ is a subgroup with order 155 since $H_{5} \cap H_{31}=\{e\}$

Since H_{5} and H_{31} are both normal, $\forall g \in G$

$$
g K g^{-1}=g H_{5} H_{31} g^{-1}=g H_{5} g^{-1} g H_{31} g^{-1}=H_{5} H_{31}=K
$$

$\Longrightarrow K \triangleleft G$
(b) Show that G is isomorphic to the direct product of a group of order 13 with a group of order 155.

Solution.

H_{13} and K from part (a) are normal subgroups and

$$
H_{13} \cap K=\{e\}
$$

because the order of the elements divides the order of the subgroup.
$\Longrightarrow H_{13} K=G$, since $H_{13} K \subset G$ and $\left|H_{13} K\right|=\frac{\left|H_{13}\right| \cdot|K|}{1}=13 \cdot 155=|G|$
It G is a group and H, K are subgroups, and if $G=H K$ then $G \approx H \times K$
$\Longrightarrow \mathrm{G} \approx H_{13} \times K$
Thus, G is isomorphic to the direct product of a group of order 13 and a group of order 155.

